Maximum - Principle - Satisfying and 1 Positivity - Preserving High Order Central Dg 2 Methods for Hyperbolic Conservation Laws
نویسندگان
چکیده
Maximum principle or positivity-preserving property holds for many mathematical 5 models. When the models are approximated numerically, it is preferred that these important prop6 erties can be preserved by numerical discretizations for the robustness and the physical relevance of 7 the approximate solutions. In this paper, we investigate such discretizations of high order accuracy 8 within the central discontinuous Galerkin framework. More specifically, we design and analyze high 9 order maximum-principle-satisfying central discontinuous Galerkin methods for scaler conservation 10 laws, and high order positivity-preserving central discontinuous Galerkin for compressible Euler sys11 tems. The performance of the proposed methods will be demonstrated through a set of numerical 12 experiments. 13
منابع مشابه
Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes
Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملMaximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes
We propose second order accurate discontinuous Galerkin (DG) schemes which satisfy a strict maximum principle for general nonlinear convection-diffusion equations on unstructured triangular meshes. Motivated by genuinely high order maximum-principle-satisfying DG schemes for hyperbolic conservation laws [14, 26], we prove that under suitable time step restriction for forward Euler time stepping...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملOn maximum-principle-satisfying high order schemes for scalar conservation laws
We construct uniformly high order accurate schemes satisfying a strict maximum principle for scalar conservation laws. A general framework (for arbitrary order of accuracy) is established to construct a limiter for finite volume schemes (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes) or discontinuous Galerkin (DG) method with first order Euler forward time discretization...
متن کامل